{-# OPTIONS --safe #-}

module Cubical.Categories.Functor.Properties where

open import Cubical.Foundations.Prelude
import Cubical.Foundations.Isomorphism as Iso
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Function hiding (_∘_)
open import Cubical.Foundations.GroupoidLaws using (lUnit; rUnit; assoc; cong-∙)
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Path
open import Cubical.Functions.Surjection
open import Cubical.Functions.Embedding
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (_+_)
open import Cubical.Categories.Category
open import Cubical.Categories.Isomorphism
open import Cubical.Categories.Morphism
open import Cubical.Categories.Functor.Base


private
  variable
     ℓ' ℓ'' : Level
    B C D E : Category  ℓ'

open Category
open Functor

F-assoc : {F : Functor B C} {G : Functor C D} {H : Functor D E}
         H ∘F (G ∘F F)  (H ∘F G) ∘F F
F-assoc = Functor≡  _  refl)  _  refl)


-- Results about functors

module _ {F : Functor C D} where

  -- the identity is the identity
  F-lUnit : F ∘F 𝟙⟨ C   F
  F-lUnit i .F-ob x = F  x 
  F-lUnit i .F-hom f = F  f 
  F-lUnit i .F-id {x} = lUnit (F .F-id) (~ i)
  F-lUnit i .F-seq f g = lUnit (F .F-seq f g) (~ i)

  F-rUnit : 𝟙⟨ D  ∘F F   F
  F-rUnit i .F-ob x = F  x 
  F-rUnit i .F-hom f = F  f 
  F-rUnit i .F-id {x} = rUnit (F .F-id) (~ i)
  F-rUnit i .F-seq f g = rUnit (F .F-seq f g) (~ i)

  -- functors preserve commutative diagrams (specificallysqures here)
  preserveCommF :  {x y z w} {f : C [ x , y ]} {g : C [ y , w ]} {h : C [ x , z ]} {k : C [ z , w ]}
                 f ⋆⟨ C  g  h ⋆⟨ C  k
                 (F  f ) ⋆⟨ D  (F  g )  (F  h ) ⋆⟨ D  (F  k )
  preserveCommF {f = f} {g = g} {h = h} {k = k} eq
    = (F  f ) ⋆⟨ D  (F  g )
    ≡⟨ sym (F .F-seq _ _) 
      F  f ⋆⟨ C  g 
    ≡⟨ cong (F ⟪_⟫) eq 
      F  h ⋆⟨ C  k 
    ≡⟨ F .F-seq _ _ 
      (F  h ) ⋆⟨ D  (F  k )
    

  -- functors preserve isomorphisms
  preserveIsosF :  {x y}  CatIso C x y  CatIso D (F  x ) (F  y )
  preserveIsosF {x} {y} (f , isiso f⁻¹ sec' ret') =
    catiso
      g g⁻¹
      -- sec
      ( (g⁻¹ ⋆⟨ D  g)
      ≡⟨ sym (F .F-seq f⁻¹ f) 
        F  f⁻¹ ⋆⟨ C  f 
      ≡⟨ cong (F .F-hom) sec' 
        F  C .id 
      ≡⟨ F .F-id 
        D .id
       )
      -- ret
      ( (g ⋆⟨ D  g⁻¹)
        ≡⟨ sym (F .F-seq f f⁻¹) 
      F  f ⋆⟨ C  f⁻¹ 
        ≡⟨ cong (F .F-hom) ret' 
      F  C .id 
      ≡⟨ F .F-id 
        D .id
       )

      where
        x' : D .ob
        x' = F  x 
        y' : D .ob
        y' = F  y 

        g : D [ x' , y' ]
        g = F  f 
        g⁻¹ : D [ y' , x' ]
        g⁻¹ = F  f⁻¹ 

  -- hacky lemma helping with type inferences
  functorCongP : {x y v w : ob C} {p : x  y} {q : v  w} {f : C [ x , v ]} {g : C [ y , w ]}
                PathP  i  C [ p i , q i ]) f g
                PathP  i  D [ F .F-ob (p i) , F. F-ob (q i) ]) (F .F-hom f) (F .F-hom g)
  functorCongP r i = F .F-hom (r i)

isEquivFunctor≡ :  {F} {G}  isEquiv (uncurry (Functor≡ {C = C} {D = D} {F = F} {G = G}))
isEquivFunctor≡ {C = C} {D = D} = Iso.isoToIsEquiv isom
 where
 open Iso.Iso
 isom : Iso.Iso _ _
 fun isom = _
 inv isom x =  c i  F-ob (x i) c) , λ {c} {c'} f i  F-hom (x i) {c} {c'} f
 F-ob (rightInv isom b _ i₁) = F-ob (b i₁)
 F-hom (rightInv isom b _ i₁) = F-hom (b i₁)
 F-id (rightInv isom b i i₁) = isProp→SquareP
       i i₁  D .isSetHom (F-hom (b i₁) (C .id)) (D .id)) refl refl
     (isProp→PathP  j  isSetHom D _ _) _ _)  i₁  F-id (b i₁)) i i₁
 F-seq (rightInv isom b i i₁) f g = isProp→SquareP
      i i₁  D .isSetHom (F-hom (b i₁) _) (seq' D (F-hom (b i₁) f) _))
     refl refl (isProp→PathP  j  isSetHom D _ _) _ _)  i₁  F-seq (b i₁) f g) i i₁
 leftInv isom _ = refl

isOfHLevelFunctor :  hLevel  isOfHLevel (2 + hLevel) (D .ob)
                              isOfHLevel (2 + hLevel) (Functor C D)
isOfHLevelFunctor  {D = D} {C = C} hLevel x _ _ =
 isOfHLevelRespectEquiv (1 + hLevel) (_ , isEquivFunctor≡)
   (isOfHLevelΣ (1 + hLevel) (isOfHLevelΠ (1 + hLevel)  _  x _ _))
     λ _  isOfHLevelPlus' 1 (isPropImplicitΠ2
      λ _ _  isPropΠ λ _  isOfHLevelPathP' 1  _ _  D .isSetHom _ _) _ _ ))

isSetFunctor : isSet (D .ob)  isSet (Functor C D)
isSetFunctor = isOfHLevelFunctor 0

-- Conservative Functor,
-- namely if a morphism f is mapped to an isomorphism,
-- the morphism f is itself isomorphism.

isConservative : (F : Functor C D)  Type _
isConservative {C = C} {D = D} F = {x y : C .ob}{f : C [ x , y ]}  isIso D (F .F-hom f)  isIso C f


-- Fully-faithfulness of functors

module _ {F : Functor C D} where

  isFullyFaithful→Full : isFullyFaithful F  isFull F
  isFullyFaithful→Full fullfaith x y = isEquiv→isSurjection (fullfaith x y)

  isFullyFaithful→Faithful : isFullyFaithful F  isFaithful F
  isFullyFaithful→Faithful fullfaith x y = isEmbedding→Inj (isEquiv→isEmbedding (fullfaith x y))

  isFull+Faithful→isFullyFaithful : isFull F  isFaithful F  isFullyFaithful F
  isFull+Faithful→isFullyFaithful full faith x y = isEmbedding×isSurjection→isEquiv
    (injEmbedding (D .isSetHom) (faith x y _ _) , full x y)

  isFaithful→reflectsMono : isFaithful F  {x y : C .ob} (f : C [ x , y ])
     isMonic D (F  f )  isMonic C f
  isFaithful→reflectsMono F-faithful f Ff-mon {a = a} {a' = a'} a⋆f≡a'⋆f =
    let Fa⋆Ff≡Fa'⋆Ff = sym (F .F-seq a f)
                      cong (F ⟪_⟫) a⋆f≡a'⋆f
                      F .F-seq a' f
    in F-faithful _ _ _ _ (Ff-mon Fa⋆Ff≡Fa'⋆Ff)


  -- Fully-faithful functor is conservative

  open isIso

  isFullyFaithful→Conservative : isFullyFaithful F  isConservative F
  isFullyFaithful→Conservative fullfaith {x = x} {y = y} {f = f} isoFf = w
    where
    w : isIso C f
    w .inv = invIsEq (fullfaith _ _) (isoFf .inv)
    w .sec = isFullyFaithful→Faithful fullfaith _ _ _ _
        (F .F-seq _ _
        i  secIsEq (fullfaith _ _) (isoFf .inv) i ⋆⟨ D  F .F-hom f)
       isoFf .sec
       sym (F .F-id))
    w .ret = isFullyFaithful→Faithful fullfaith _ _ _ _
        (F .F-seq _ _
        i  F .F-hom f ⋆⟨ D  secIsEq (fullfaith _ _) (isoFf .inv) i)
       isoFf .ret
       sym (F .F-id))

  -- Lifting isomorphism upwards a fully faithful functor

  module _ (fullfaith : isFullyFaithful F) where

    liftIso : {x y : C .ob}  CatIso D (F .F-ob x) (F .F-ob y)  CatIso C x y
    liftIso f .fst = invEq (_ , fullfaith _ _) (f .fst)
    liftIso f .snd = isFullyFaithful→Conservative fullfaith (subst (isIso D) (sym (secEq (_ , fullfaith _ _) (f .fst))) (f .snd))

    liftIso≡ : {x y : C .ob}  (f : CatIso D (F .F-ob x) (F .F-ob y))  F-Iso {F = F} (liftIso f)  f
    liftIso≡ f = CatIso≡ _ _ (secEq (_ , fullfaith _ _) (f .fst))


-- Functors inducing surjection on objects is essentially surjective

isSurj-ob→isSurj : {F : Functor C D}  isSurjection (F .F-ob)  isEssentiallySurj F
isSurj-ob→isSurj surj y = Prop.map  (x , p)  x , pathToIso p) (surj y)


-- Fully-faithful functors induce equivalence on isomorphisms

isFullyFaithful→isEquivF-Iso : {F : Functor C D}
   isFullyFaithful F   x y  isEquiv (F-Iso {F = F} {x = x} {y = y})
isFullyFaithful→isEquivF-Iso {F = F} fullfaith x y =
  Σ-cong-equiv-prop (_ , fullfaith x y) isPropIsIso isPropIsIso _
     f  isFullyFaithful→Conservative {F = F} fullfaith {f = f}) .snd


-- Functors involving univalent categories

module _
  (isUnivD : isUnivalent D)
  where

  open isUnivalent isUnivD

  -- Essentially surjective functor with univalent target induces surjection on objects

  isSurj→isSurj-ob : {F : Functor C D}  isEssentiallySurj F  isSurjection (F .F-ob)
  isSurj→isSurj-ob surj y = Prop.map  (x , f)  x , CatIsoToPath f) (surj y)


module _
  (isUnivC : isUnivalent C)
  (isUnivD : isUnivalent D)
  {F : Functor C D}
  where

  open isUnivalent

  -- Fully-faithful functor between univalent target induces embedding on objects

  isFullyFaithful→isEmbd-ob : isFullyFaithful F  isEmbedding (F .F-ob)
  isFullyFaithful→isEmbd-ob fullfaith x y =
    isEquiv[equivFunA≃B∘f]→isEquiv[f] _ (_ , isUnivD .univ _ _)
      (subst isEquiv (F-pathToIso-∘ {F = F})
      (compEquiv (_ , isUnivC .univ _ _)
        (_ , isFullyFaithful→isEquivF-Iso {F = F} fullfaith x y) .snd))

TransportFunctor : (C  D)  Functor C D
F-ob (TransportFunctor p) = subst ob p
F-hom (TransportFunctor p) {x} {y} =
 transport λ i  cong Hom[_,_] p i
   (transport-filler (cong ob p) x i)
   (transport-filler (cong ob p) y i)
F-id (TransportFunctor p) {x} i =
  transp  jj  Hom[ p (i  jj) , transport-filler  i₁  ob (p i₁)) x (i  jj) ]
          (transport-filler  i₁  ob (p i₁)) x (i  jj))) i
    (id (p i) {(transport-filler (cong ob p) x i)})

F-seq (TransportFunctor p) {x} {y} {z} f g i =
  let q :  {x y}  _  _
      q = λ {x y}  λ i₁ 
             Hom[ p i₁ , transport-filler  i₂  ob (p i₂)) x i₁ ]
                        (transport-filler  i₂  ob (p i₂)) y i₁)
  in transp  jj  Hom[ p (i  jj)
       , transport-filler  i₁  ob (p i₁)) x (i  jj) ]
        (transport-filler  i₁  ob (p i₁)) z (i  jj))) i
     (_⋆_ (p i) (transport-filler q f i) (transport-filler q g i))