open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Path
open import Cubical.Foundations.Structure using (⟨_⟩; str)
open import Cubical.Data.Sigma
open import Cubical.Data.FinData
open import Cubical.Data.Unit
open import Cubical.HITs.PropositionalTruncation as PT hiding (map)
open import Cubical.HITs.PropositionalTruncation.Monad
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.Reflection.RecordEquiv
open import Cubical.Categories.Category
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Reasoning
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Functor hiding (Id)
open import Cubical.Categories.Constructions.Slice
open import Cubical.Categories.Equivalence
open import Cubical.Categories.NaturalTransformation
open import Categories.CartesianMorphism
open import Categories.GenericObject
open import Realizability.CombinatoryAlgebra
open import Realizability.ApplicativeStructure
open import Realizability.PropResizing
module Realizability.Modest.SubQuotientCanonicalPERIso {ℓ} {A : Type ℓ} (ca : CombinatoryAlgebra A) where
open import Realizability.Assembly.Base ca
open import Realizability.Assembly.Morphism ca
open import Realizability.Assembly.Terminal ca
open import Realizability.Assembly.SetsReflectiveSubcategory ca
open import Realizability.Modest.Base ca
open import Realizability.Modest.UniformFamily ca
open import Realizability.Modest.CanonicalPER ca
open import Realizability.PERs.PER ca
open import Realizability.PERs.SubQuotient ca
open Assembly
open CombinatoryAlgebra ca
open Realizability.CombinatoryAlgebra.Combinators ca renaming (i to Id; ia≡a to Ida≡a)
open Contravariant UNIMOD
open UniformFamily
open DisplayedUFamMap
module
_ {X : Type ℓ}
(asmX : Assembly X)
(isModestAsmX : isModest asmX) where
theCanonicalPER : PER
theCanonicalPER = canonicalPER asmX isModestAsmX
theSubQuotient : Assembly (subQuotient theCanonicalPER)
theSubQuotient = subQuotientAssembly theCanonicalPER
invert : AssemblyMorphism theSubQuotient asmX
AssemblyMorphism.map invert sq = SQ.rec (asmX .isSetX) reprAction reprActionCoh sq module Invert where
reprAction : Σ[ a ∈ A ] (a ~[ theCanonicalPER ] a) → X
reprAction (a , x , a⊩x , _) = x
reprActionCoh : ∀ a b a~b → reprAction a ≡ reprAction b
reprActionCoh (a , x , a⊩x , _) (b , x' , b⊩x' , _) (x'' , a⊩x'' , b⊩x'') =
x
≡⟨ isModestAsmX x x'' ∣ a , a⊩x , a⊩x'' ∣₁ ⟩
x''
≡⟨ isModestAsmX x'' x' ∣ b , b⊩x'' , b⊩x' ∣₁ ⟩
x'
∎
AssemblyMorphism.tracker invert = return (Id , (λ sq a a⊩sq → goal sq a a⊩sq)) where
realizability : (sq : subQuotient theCanonicalPER) → (a : A) → a ⊩[ theSubQuotient ] sq → a ⊩[ asmX ] (invert .map sq)
realizability sq a a⊩sq =
SQ.elimProp
{P = motive}
isPropMotive
elemMotive
sq a a⊩sq where
motive : (sq : subQuotient theCanonicalPER) → Type _
motive sq = ∀ (a : A) → a ⊩[ theSubQuotient ] sq → a ⊩[ asmX ] (invert .map sq)
isPropMotive : ∀ sq → isProp (motive sq)
isPropMotive sq = isPropΠ2 λ a a⊩sq → asmX .⊩isPropValued _ _
elemMotive : (x : domain theCanonicalPER) → motive [ x ]
elemMotive (r , x , r⊩x , _) a (x' , a⊩x' , r⊩x') = subst (a ⊩[ asmX ]_) (isModestAsmX x' x ∣ r , r⊩x' , r⊩x ∣₁) a⊩x'
goal : (sq : subQuotient theCanonicalPER) → (a : A) → a ⊩[ theSubQuotient ] sq → (Id ⨾ a) ⊩[ asmX ] (invert .map sq)
goal sq a a⊩sq = subst (_⊩[ asmX ] _) (sym (Ida≡a a)) (realizability sq a a⊩sq)
forward : AssemblyMorphism asmX theSubQuotient
AssemblyMorphism.map forward x = subquot module Forward where
mainMap : Σ[ a ∈ A ] (a ⊩[ asmX ] x) → subQuotient theCanonicalPER
mainMap (a , a⊩x) = [ a , x , a⊩x , a⊩x ]
mainMap2Constant : 2-Constant mainMap
mainMap2Constant (a , a⊩x) (b , b⊩x) = eq/ _ _ (x , a⊩x , b⊩x)
subquot : subQuotient theCanonicalPER
subquot = PT.rec→Set squash/ mainMap mainMap2Constant (asmX .⊩surjective x)
AssemblyMorphism.tracker forward =
return
(Id ,
(λ x a a⊩x →
PT.elim
{P = λ surj → (Id ⨾ a) ⊩[ theSubQuotient ] (PT.rec→Set squash/ (Forward.mainMap x) (Forward.mainMap2Constant x) surj)}
(λ surj → theSubQuotient .⊩isPropValued (Id ⨾ a) (PT.rec→Set squash/ (Forward.mainMap x) (Forward.mainMap2Constant x) surj))
(λ { (b , b⊩x) → x , subst (_⊩[ asmX ] x) (sym (Ida≡a a)) a⊩x , b⊩x })
(asmX .⊩surjective x)))
subQuotientCanonicalIso : CatIso MOD (X , asmX , isModestAsmX) (subQuotient theCanonicalPER , theSubQuotient , isModestSubQuotientAssembly theCanonicalPER)
fst subQuotientCanonicalIso = forward
isIso.inv (snd subQuotientCanonicalIso) = invert
isIso.sec (snd subQuotientCanonicalIso) = goal where
opaque
pointwise : ∀ sq → (invert ⊚ forward) .map sq ≡ sq
pointwise sq =
SQ.elimProp
(λ sq → squash/ (forward .map (invert .map sq)) sq)
(λ { d@(a , x , a⊩x , a⊩'x) →
PT.elim
{P = λ surj → PT.rec→Set squash/ (Forward.mainMap (Invert.reprAction [ d ] d)) (Forward.mainMap2Constant (Invert.reprAction [ d ] d)) surj ≡ [ d ]}
(λ surj → squash/ _ _)
(λ { (b , b⊩x) → eq/ _ _ (x , b⊩x , a⊩x) })
(asmX .⊩surjective x) })
sq
goal : invert ⊚ forward ≡ identityMorphism theSubQuotient
goal = AssemblyMorphism≡ _ _ (funExt pointwise)
isIso.ret (snd subQuotientCanonicalIso) = goal where
opaque
pointwise : ∀ x → (forward ⊚ invert) .map x ≡ x
pointwise x =
PT.elim
{P =
λ surj →
invert .map
(PT.rec→Set squash/ (Forward.mainMap x) (Forward.mainMap2Constant x) surj)
≡ x}
(λ surj → asmX .isSetX _ _)
(λ { (a , a⊩x) → refl })
(asmX .⊩surjective x)
goal : forward ⊚ invert ≡ identityMorphism asmX
goal = AssemblyMorphism≡ _ _ (funExt pointwise)